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The dynamical Lie algebraic method has been applied to treat the V–V and T–V energy
transfers in the collinear scattering system AB + CD. The expression for the vibrational
transition probability, which contains the main dynamical parameters, is given analytically.
By using this expression we probe into the V–V resonance and T–V resonance phenomena
appearing in the process of energy transfer. We find that the transition probability of V–V
resonance is in good agreement with that obtained using the resonant exchange hypothesis.
Then the reliability of the resonant exchange hypothesis is confirmed.

1. Introduction

The dynamical Lie algebraic method developed by Alhassid and Levine has
successfully been used to describe the topics of gas–surface scattering [2,4] and energy
transfer in the collinear scattering system AB + BC [3]. Comparing with the usual
perturbation theory, its advantage lies in the fact that the expression for the transition
probability that contains the main dynamical parameters may be given analytically
without being limited by the perturbation condition [2–4].

In our dealing with energy transfer, however, we treat the translational motion
classically. This is the so-called semiclassical energy transfer theory [3,7]. In this
paper, we will generalize the dynamical Lie algebraic method to the collinear collision
of the AB+CD scattering system, in which the translational motion is also treated quan-
tum mechanically, i.e., a purely quantum mechanical energy transfer theory [7]. It is
obvious that the quantization of the translational motion may result in increasing of the
dimension of the dynamical Lie algebra. In this way, the dimension of the dynamical
Lie algebra of the system AB + CD increases from 15 (semiclassical treating) to 28
(pure quantum treating).

The interaction potential energy function of the system AB + CD is still the
exponential type potential presented by Rapp and Golden [7]. Due to the existence of
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vibration–translation and vibration–vibration couplings, there are T–V and V–V energy
transfers in the system AB + CD.

On the basis of the method mentioned above we obtain the analytical expres-
sion for the transition probabilities containing the main dynamical parameters of the
collinear system AB + CD. As an application we investigate the T–V resonance and
V–V resonance appearing in the process of T–V and V–V energy transfer, respectively.
The expression of the V–V resonant transition probability displays good agreement
with that obtained by Rapp and Golden’s resonant exchange hypothesis. This confirms
the reliability of resonant exchange hypothesis.

This paper is organised as follows. In section 2 the Hamiltonian of the scattering
system AB + CD is described, in section 3 we present the evolution operator and
transition probability. The results are discussed in section 4.

2. Hamiltonian of the scattering system AB + CD

According to scattering theory [7], the Hamiltonian operator of the collinear
scattering system AB + CD can be expressed in the form

H =Hx +H1 +H2 + V (x1,Y1,Y2), (1)

Hx =
1

2M̃
p2
x, (2)

Hj =
1

2µj
p2
j +

1
2
µjω

2
jY

2
j (j = 1, 2), (3)

V (x,Y1,Y2) =A′′e−x/Leγ1Y1/Leγ2Y2/L, (4)

where Hx denotes the relative translation energy operator between AB and CD. x is the
coordinate between the center of mass of AB, G1, and that of CD, G2 (see figure 1),
px is the momentum operator corresponding to x, M̃ = (mA +mB)(mC +mD)/(mA +
mB + mC + mD). H1 and H2 represent vibrational energy operators of AB and CD,

Figure 1. Coordinates for the collinear scattering system AB + CD.
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respectively. ω1 and ω2 are vibrational angular frequencies of AB and CD, respectively,
µ1 = mAmB/(mA + mB), µ2 = mCmD/(mC + mD). Y1 = y1 − y(0)

1 and Y2 =

y2−y(0)
2 stand for vibrational coordinates of AB and CD, respectively, y(0)

1 and y(0)
2 are

the corresponding equilibrium vibrational coordinates. pj (j = 1, 2) are momentum
operators corresponding to Yj . V (x,Y1,Y2) denotes the interaction potential of AB
and CD. A′′,L are potential parameters (A′′ = E0, E0 = 1

2M̃v2
0, v0 is the initial

translational velocity) [7], γ1 = mA/(mA +mB), γ2 = mD/(mC +mD).
In order to adopt the dynamical Lie algebraic method effectively, we need to

make some approximations to the potential function V (x,Y1,Y2) [1,3]. By using
Taylor expansion we expand the potential V with respect to variables x, Y1 and Y2. It
is necessary to consider at least terms of the second order in the expansion so that the
couplings among x, Y1 and Y2 emerge and result in the effect of T–V and V–V energy
transfer. Thus we obtain

V (x,Y1,Y2) =A′′
{
− 1
L
x+

γ1

L
Y1 +

γ2

L
Y2 +

1
2L2x

2 +
γ2

1

2L2Y
2

1

+
γ2

2

2L2Y
2

2 −
γ1

L2xY1 −
γ2

L2xY2 +
γ1γ2

L2 Y1Y2

}
. (5)

In deriving equation (5) we have neglected those parameter terms (terms containing
no coordinate operators) which make no contribution to the dynamics. As for the
dynamical Lie algebraic method, it is convenient to use the particle number picture.
So we introduce the following transformation formulas:

x=
λ

2π
√

2

(
b+ + b

)
,

px = i
2π~
λ
√

2

(
b+ − b

)
,

Yj =

(
~

2µjωj

)1/2(
a+
j + aj

)
,

Pj =

(
~µjωj

2

)1/2(
a+
j − aj

)
(j = 1, 2), (6)

where λ is the de Broglie wave length corresponding to px; b+, b are creation operators
and annihilation operators corresponding to x, px; a+

j , a are those corresponding to
Yj , Pj . By using the commutation relation [x, px] = i~, [Yj ,Pj] = i~ and equation (6)
we have [

aj , a
+
k

]
= δjk (j, k = 1, 2),

(7)[
b, b+

]
= 1.
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a+
j , aj and b+, b commute each other. Equation (7) is the basic relations used to

seek the dynamical Lie algebra of the scattering system. It follows by substituting
equation (6) into equations (1)–(5), respectively, and using equation (7) that

H =H (0) + Vs, (8)

H (0) =HT +H1 +H2, (9)

HT =
1

2M̃

(
2π~
λ

)2

b+b, (10)

Hj = ~ωj
(
a+
j aj +

1
2

)
(j = 1, 2), (11)

Vs = s1a
+
1 + s2a1 + s3a

+
1 a1 + s4a

+2
1 + s5a

2
1 + s6a

+
2 + s7a2 + s8a

+
2 a2 + s9a

+2
2

+ s10a
2
2 + s11b

+ + s12b+ s13b
+b+ s14b

+2 + s15b
2 + s16a

+
1 a

+
2 + s17a1a2

+ s18a
+
1 a2 + s19a1a

+
2 + s20a

+
1 b

+ + s21a1b+ s22a
+
1 b+ s23a1b

+ + s24a
+
2 b

+

+ s25a2b+ s26a
+
2 b+ s27a2b

+, (12)

in which H (0) is the free Hamiltonian of the system. HT denotes translational energy
operators between molecules, Hj are vibrational energy operators of molecules. Vs is
the interaction Hamiltonian between molecules. Seeing that we are free to divide the
free Hamiltonian from the total Hamiltonian, we divide again the free Hamiltonian
represented by equation (1) and the interaction Hamiltonian. The expressions of dy-
namical parameters sl (l = 1, 2, . . . , 27) are listed in table 1.

Table 1
The expressions for dynamical parameters.

s1 = s2 = A′′ γ1
L ( ~

2µ1ω1
)1/2, s4 = s5 = A′′

γ2
1~

4L2µ1ω1
, s3 = A′′

γ2
1~

2L2µ1ω1
,

s6 = s7 = A′′ γ2
L

( ~
2µ2ω2

)1/2, s9 = s10 = A′′
γ2

2~
4L2µ2ω2

, s8 = A′′
γ2

2~
2L2µ2ω2

,

s11 = s12 = −A′′ λ

2πL
√

2
, s14 = s15 = A′′ λ2

16π2L2 − 1

4M̃
( 2π~
λ

)2, s13 = A′′ λ2

8π2L2 ,

s16 = s17 = s18 = s19 = A′′ γ1γ2
L2 ( ~2

4µ1µ2ω1ω2
)1/2,

s20 = s21 = s22 = s23 = −A′′ γ1λ

2πL2
√

2
( ~

2µ1ω1
)1/2,

s24 = s25 = s26 = s27 = −A′′ γ2λ

2πL2
√

2
( ~

2µ2ω2
)1/2,

v1 = s1eiω1t, v2 = v∗1 , v4 = s4e2iω1t, v5 = v∗1 , v3 = s3,

v6 = s6eiω2t, v7 = v∗6 , v9 = s9e2iω2t, v10 = v∗9 , v8 = s8,

v11 = s11eiEt/~, v12 = v∗11, v14 = s14e2iEt/~, v15 = v∗14, v13 = s13,

v16 = s16ei(ω1+ω2)t, v17 = v∗16, v18 = s18ei(ω1−ω2)t, v19 = v∗18,

v20 = s20ei(~ω1+E)t/~, v21 = v∗20, v22 = s22ei(~ω1−E)t/~,

v23 = s∗22, v24 = v24ei(~ω2+E)t/~, v25 = s∗24,

v26 = s26ei(~ω−E)t/~, v27 = s∗26, E = 1

2M̃
( 2π~
λ )2.
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To seek the dynamical Lie algebra of the system one needs to transform Vs into
the interaction picture:

VI (t) = exp

{
i
~
H (0)t

}
Vs exp

{
− i
~
H (0)t

}
= v1a

+
1 + v2a1 + v3a

+
1 a1 + v4a

+2
1 + v5a

2
1 + v6a

+
2 + v7a2 + v8a

+
2 a2

+ v9a
+2
2 + v10a

2
2 + v11b

+ + v12b+ v13b
+b+ v14b

+2 + v15b
2 + v16a

+
1 a

+
2

+ v17a1a2 + v18a
+
1 a2 + v19a1a

+
2 + v20a

+
1 b

+ + v21a1b+ v22a
+
1 b+ v23a1b

+

+ v24a
+
2 b

+ + v25a2b+ v26a
+
2 b+ v27a2b

+. (13)

The expressions of dynamical parameters vl (l = 1, 2, . . . , 27) are listed in table 1.
Subscript I stands for interaction picture. Under the commutation relations presented
by table 2 the operators on the right-hand side of equation (13) are closed, so they
form a 28-dimensional dynamical Lie algebra h(28), the algebra elements are: I , a+

1 ,
a1, a+

1 a1, a+2
1 , a2

1, a+
2 , a2, a2a

+
2 , a+2

2 , a2
2, b+, b, b+b, b+2, b2, a+

1 a
+
2 , a1a2, a+

1 a2,
a1a

+
2 , a+

1 b
+, a1b, a

+
1 b, a1b

+, a+
2 b

+, a2b, a
+
2 , a2b

+ (here the order of the algebra
elements has been preordained).

Table 2
The commutation relations for the dynamical Lie algebra h(28). Other commutation relations can be

obtained by taking the adjoint of those listed in this table.

[aj , a+
j ] = I , [a+

j aj , a
+
j ] = a+

j , [a2
j , a

+
j ] = 2aj , [a+

j aj , a
+2
j ] = 2a+2

j ,

[a2
j , a

+2
j ] = 2 + 4a+

j aj (j = 1, 2), [b+, b] = 1, [b+b, b+] = b+, [b2, b+] = 2b,

[b+b, b+2] = 2b+2, [b2, b+2] = 2 + 4b+b, [a1a2, a+
1 a

+
2 ] = 1 + a+

1 a1 + a+
2 a2, [a+

1 a2, a+
1 a

+
2 ] = a+2

1 ,

[a1a
+
2 , a+

1 a
+
2 ] = a+2

2 , [a+
1 a2, a1a

+
2 ] = a+

1 a1 − a+
2 a2, [a+

j b, a
+
j b

+] = 1 + a+
j aj + b+b,

[a+
j b, a

+
j b

+] = a+2
j , [ajb+, a+

j b
+] = b+2, [a+

j b, ajb
+] = a+

j aj − b+b (j = 1, 2),

[a1a2, a+
1 b

+] = a2b
+, [a1a

+
2 , a+

1 b
+] = a+

2 b
+, [a+

1 b, a
+
2 b] = a+

1 a
+
2 ,

[a1b, a+
2 b

+] = a1a
+
2 , [a1a2, a+

2 b] = a1b
+, [a+

1 a2, a+
2 b

+] = a+
1 b

+,

[a1a2, a+
1 b] = a2b, [a1a

+
2 , a+

1 b] = a+
2 b, [a1b, a2b

+] = a1a2,

[a+
1 b, a2b

+] = a+
1 a2, [a1a2, a+

2 b] = a1b, [a+
1 a2, a+

2 b] = a+
1 b,

[a1, a+
1 a

+
2 ] = a+

2 , [a1, a+
1 a2] = a2, [a+

1 a1, a+
1 a

+
2 ] = a+

1 a
+
2 ,

[a+
1 a1, a+

1 a2] = a+
1 a2, [a2

1, a+
1 a

+
2 ] = 2a1a

+
2 , [a2

1, a+
1 a2] = 2a1a2,

[a2, a+
1 a

+
2 ] = a+

1 , [a2, a1a
+
2 ] = a1, [a+

2 a2, a+
1 a

+
2 ] = a+

1 a
+
2 ,

[a+
2 a2, a1a

+
2 ] = a1a

+
2 , [a2

2, a+
1 a

+
2 ] = 2a+

1 a2, [a2
2, a1a

+
2 ] = 2a1a2,

[aj , a+
j b

+] = b+, [aj , a+
j b] = b, [a+

j aj , a
+
j b

+] = a+
j b

+,

[a2
j , a

+
j b

+] = 2ajb+, [a2
j , a

+
j b] = 2ajb, [b, a+

j b
+] = a+

j , [b, ajb+] = aj ,

[b+b, a+
j b

+] = a+
j b

+, [b+b, ajb+] = ajb
+, [b2, a+

j b
+] = 2a+

j b,

[b2, ajb+] = 2ajb (j = 1, 2).
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3. Evolution operators and transition probability

In the light of the dynamical Lie algebra theory, the evolution operators of the
system can be expressed as [1]

U (t, t0) = eT , (14)

T =− i
~

27∑
k=0

uk(t, t0)H (k), (15)

where H (k) denote the algebra elements (according to the preordained order). uk(t, t0)
are group parameters, they are determined by the following equation (under the first
order approximation of the group parameters) [1]:

∂

∂t
u =

{
I− 1

2
d(T )

}
v, (16)

Table 3
Matrix elements i~dlk.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 u2 −u∗2 0 2u5 2u∗5 u7 −u∗7 0 2u10 −2u∗10 u12 −u∗12 0 2u15

1 0 u3 −2u∗5 −u1 2u2 0 u18 −u∗17 0 0 0 u22 −u∗21 0 0
2 0 2u5 −u∗3 u2 0 −2u∗2 u17 −u∗18 0 0 0 u21 −u∗22 0 0
3 0 0 0 0 4u5 −4u∗5 0 0 0 0 0 0 0 0 0
4 0 0 0 −2u4 2u3 0 0 0 0 0 0 0 0 0 0
5 0 0 0 2u5 0 −2u∗3 0 0 0 0 0 0 0 0 0
6 0 u19 −u∗17 0 0 0 u8 −2u∗10 −u6 2u7 0 u26 −u∗25 0 0
7 0 u17 −u∗19 0 0 0 2u10 −u∗8 u7 0 −2u∗7 u25 −u∗26 0 0
8 0 0 0 0 0 0 0 0 0 4u10 −4u∗10 0 0 0 0
9 0 0 0 0 0 0 0 0 −2u9 2u8 0 0 0 0 0

10 0 0 0 0 0 0 0 0 2u10 0 −2u∗8 0 0 0 0
11 0 u23 −u∗21 0 0 0 u27 −u∗25 0 0 0 u13 −2u∗15 −u11 2u12

12 0 u21 −u∗23 0 0 0 u25 −u∗27 0 0 0 2u15 −u∗13 u13 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4u15

14 0 0 0 0 0 0 0 0 0 0 0 0 0 −2u14 2u13

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2u15 0
16 0 0 0 −u16 2u19 0 0 0 −u16 2u18 0 0 0 0 0
17 0 0 0 u17 0 −2u∗19 0 0 u17 0 −2u∗18 0 0 0 0
18 0 0 0 −u18 2u17 0 0 0 u18 0 −2u∗17 0 0 0 0
19 0 0 0 −u19 0 −2u∗17 0 0 u19 2u17 0 0 0 0 0
20 0 0 0 −u20 2u23 0 0 0 0 0 0 0 0 −u20 2u22

21 0 0 0 u21 0 −2u∗23 0 0 0 0 0 0 0 u21 0
22 0 0 0 −u22 2u21 0 0 0 0 0 0 0 0 u22 0
23 0 0 0 u23 0 −2u∗21 0 0 0 0 0 0 0 −u23 2u21

24 0 0 0 0 0 0 0 0 −u24 2u27 0 0 0 −u24 2u26

25 0 0 0 0 0 0 0 0 u25 0 −2u∗27 0 0 u25 0
26 0 0 0 0 0 0 0 0 −u26 2u25 0 0 0 u26 0
27 0 0 0 0 0 0 0 0 u27 0 −2u∗25 0 0 −u27 2u25
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in which column vectors u and v are

u =


u0

u1
...
u27

 , v =


0
v1
...
v27

 ,

I is a 28 × 28 identity matrix. The 28 × 28 matrix d(T ) can be determined by the
following operators equation [1]:

[
T ,H (k)] =

27∑
l=0

dlk(T )H (l), k = 0, 1, 2, . . . , 27. (17)

Table 3
(Continued.)

15 16 17 18 19 20 21 22 23 24 25 26 27

0 −2u∗15 u17 −u∗17 0 0 u21 −u∗21 0 0 u25 −u∗25 0 0
1 0 u7 0 −u6 0 u12 0 −u11 0 0 0 0 0
2 0 0 −u∗7 0 u∗6 0 −u∗12 0 u∗11 0 0 0 0
3 0 u17 −u∗17 −u19 u∗19 u21 −u∗21 −u23 u∗23 0 0 0 0
4 0 u18 0 −u16 0 u22 0 −u20 0 0 0 0 0
5 0 0 −u∗18 0 u∗16 0 −u∗22 0 u∗20 0 0 0 0
6 0 u2 0 0 −u∗2 0 0 0 0 u12 0 −u11 0
7 0 0 −u∗2 u2 0 0 0 0 0 0 −u∗12 0 −u∗11

8 0 u17 −u∗17 u19 −u∗19 0 0 0 0 u25 −u∗25 −u27 u∗27

9 0 u19 0 0 −u∗17 0 0 0 0 u26 0 −u24 0
10 0 0 −u∗19 u17 0 0 0 0 0 0 −u∗26 0 u∗24

11 0 0 0 0 0 u2 0 0 −u∗2 u7 0 0 −u∗7
12 −2u∗12 0 0 0 0 0 −u∗2 u2 0 0 −u∗7 u7 0
13 −4u∗15 0 0 0 0 u21 −u∗21 u23 −u∗23 u25 −u∗25 u27 −u∗27

14 0 0 0 0 0 u23 0 0 −u∗21 u27 0 0 −u∗25

15 −2u∗13 0 0 0 0 0 −u∗23 u21 0 0 −u∗27 u25 0
16 0 t1 0 −u9 −2u9 −2u∗5 0 −u24 0 u22 0 −u20 0
17 0 0 t2 2u5 2u∗9 0 −u∗26 0 u∗24 0 −u∗22 0 u∗20

18 0 2u10 −2u∗5 t3 0 u25 0 −u27 0 0 −u∗21 0 u∗23

19 0 2u5 −2u∗10 0 t4 0 −u∗25 0 u∗27 u21 0 −u23 0
20 0 u27 0 −u24 0 t5 0 −2u14 −2u∗5 u18 0 0 −u∗17

21 −2u∗22 0 −u∗27 0 u∗24 0 t6 2u5 2u∗14 0 −u∗18 u17 0
22 −2u∗21 u25 0 −u26 0 2u15 −2u∗5 t7 0 0 −u∗17 u18 0
23 0 0 −u∗25 0 u∗26 2u5 −2u∗15 0 t8 u17 0 0 −u∗18

24 0 u23 0 0 −u∗21 u19 0 0 −u∗17 t9 0 −2u14 −2u∗10

25 −2u∗26 0 −u∗23 u21 0 0 −u∗19 u17 0 0 t10 2u10 2u∗14

26 −2u∗25 u21 0 0 −u∗23 0 −u∗17 u19 0 2u15 −2u∗10 t11 0
27 0 0 −u∗21 u23 0 u17 0 0 −u∗19 2u10 −2u∗15 0 t12

Here, t1 = u3 + u8, t2 = −u∗3 − u∗8 , t3 = u3 − u8, t4 = −u∗3 + u∗8 , t5 = u3 + u13, t6 = −u∗3 − u∗13,
t7 = u3 − u13, t8 = −u∗3 + u∗13, t9 = u8 + u13, t10 = −u∗8 − u∗13, t11 = u8 − u13, t12 = −u∗8 + u∗13.
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The expressions of matrix elements dlk(T ) are listed in table 3. Equation (16) can be
solved with the help of the progressive approach method. Table 4 presents the results
obtained under the first order progressive approach.

In the particle number picture [1,3], the eigenstates of the particle number oper-
ators a+

j aj (j = 1, 2) and b+b are

|nj〉 =
a

+nj
j√
nj!
|0〉 and |m〉 =

b+m√
m!
|0〉.

Since the three types of particle operators commute each other, they have the common
eigenstate |n1〉|n2〉|m〉. Then we have

H (0)|n1〉|n2〉|m〉 =

{
mE + ~ω1

(
n1 +

1
2

)
+ ~ω2

(
n2 +

1
2

)}
|n1〉|n2〉|m〉, (18)

in which ET = mE is the eigenvalue of the translational energy operators,

E =
1

2M̃

(
2π~
λ

)2

.

~ωj(nj + 1/2) are eigenvalues of the vibrational energy operator of molecules. The
transition matrix element (under the first order approximation of the group parameter)
of the system transiting from quantum state m,n1,n2 to m′,n′1,n′2 is

lim
t→∞
t0→−∞

〈m′|〈n′1|〈n′2|U (t, t0)|n2〉|n1〉|m〉

= lim
t→te
t0→−te

〈m′|〈n′1|〈n′2|U (t, t0)|n2〉|n1〉|m〉

= 〈m′|〈n′1|〈n′2|U (te,−te)|n2〉|n1〉|m〉

= 〈m′|〈n′1|〈n′2|
{
I − i

~

27∑
l=0

ul(te,−te)H (l)

}
|n2〉|n1〉|m〉. (19)

The expressions of equation (19) are listed in table 4. Here 2te is the effective collision
time [5], that is,

lim
t→∞

or t0→−∞

VI (t) = lim
t→te

or t0→−te

VI (t) = 0.

Finally, the corresponding transiton probability is

Pm,n1,n2→m′,n′1,n′2
=
∣∣〈m′|〈n′1|〈n′2|U (te,−te)|n2〉|n1〉|m〉

∣∣2. (20)

The expressions of the group parameters ul(te,−te) (l = 1, 2, . . . , 27) appearing in
equation (19) or (20) are given in table 4.
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Table 4
The expressions for group parameters uj(te, te) and transition probability.

u1 = 2s1
ω1

e(i/2)ω1te sin ω1te
2 , u2 = u∗1 , u3 = 2s3te,

u4 = s4
ω1

eiω1te sin(ω1te), u5 = u∗4 ,

u6 = 2s6
ω2

e(i/2)ω2te sin ω2te
2 , u7 = u∗6 , u9 = s9

ω2
eiω2te sin(ω2te),

u10 = u∗9 , u8 = 2s8te,

u11 = 2~s11
E

e(i/(2~))Ete sin Ete
2~ , u12 = u∗11, u13 = 2s13te,

u14 = ~s14
E e(i/~)Ete sin Ete

~ , u15 = u∗14,

u16 = 2s16
ω1+ω2

e(i/2)(ω1+ω2)te sin (ω1+ω2)te
2 , u17 = u∗16,

u18 = 2s18
ω1−ω2

e(i/2)(ω1−ω2)te sin (ω1−ω2)te
2 , u19 = u∗18,

u20 = 2~s20
~ω1+E

e(i/2~)(~ω1+E)te sin (~ω1+E)te
2~ , u21 = u∗20,

u22 = 2~s22
~ω1−E e(i/2~)(~ω1−E)te sin (~ω1−E)te

2~ , u23 = u∗22,

u24 = 2~s24
~ω2+E e(i/2~)(~ω2+E)te sin (~ω2+E)te

2~ , u25 = u∗24,

u26 = 2~s26
~ω2−E e(i/2~)(~ω2−E)te sin (~ω2−E)te

~ , u27 = u∗26.

〈m′|〈n′1|〈n′2|U (te,−te)|n2〉n1〉|m〉

= 〈m′|〈n′1|〈n′2|

{
I − i

~

27∑
l=0

ul(te,−te)H (l)

}
|n2〉n1〉|m〉

= δm′ ,mδn′
1

,n1
δn′

2
,n2
− i
~{u0δm′ ,mδn′

1
,n1
δn′

2
,n2

+ u1
√
n1 + 1δm′ ,mδn′

1
,n1
δn′

2
,n2

+ u2
√
n1δm′ ,mδn′

1
,n1−1δn′

2
,n2

+ u3n1δm′ ,mδn′
1

,n1
δn′

2
,n2

+ u4
√

(n1 + 1)(n1 + 2)δm′ ,mδn′
1
,n1+2δn′

2
,n2

+ u5
√
n1(n1 − 1)δm′ ,mδn′

1
,n1−2δn′

2
,n2

+ u6
√
n2 + 1δm′ ,mδn′

1
,n1
δn′

2
,n2+1 + u7

√
n2δm′ ,mδn′

1
,n1
δn′

2
,n2−1

+ u8n2δm′ ,mδn′
1

,n1
δn′

2
,n2

+ u9
√

(n2 + 1)(n2 + 2)δm′ ,mδn′
1
,n1
δn′

2
,n2+2

+ u10
√
n2(n2 − 1)δm′ ,mδn′

1
,n1
δn′

2
,n2−2 + u11

√
m+ 1δm′ ,m+1δn′

1
,n1
δn′

2
,n2

+ u12
√
mδm′ ,m−1δn′

1
,n1
δn′

2
,n2

+ u13mδm′,mδn′
1
,n1
δn′

2
,n2

+ u14
√

(m+ 1)(m+ 2)δm′ ,m+2δn′
1
,n1
δn′

2
,n2

+ u15
√
m(m− 1)δm′ ,m−2δn′

1
,n1
δn′

2
,n2

+ u16
√

(n1 + 1)(n2 + 1)δm′ ,mδn′
1
,n1+1δn′

2
,n2+1 + u17

√
n1n2δm′ ,mδn′

1
,n1−1δn′

2
,n2−1

+ u18
√

(n1 + 1)n2δm′ ,mδn′
1
,n1+1δn′

2
,n2−1 + u19

√
n1(n2 + 1)δm′ ,mδn′

1
,n1−1δn′

2
,n2+1

+ u20
√

(n1 + 1)(m+ 1)δm′ ,m+1δn′
1

,n1+1δn′
2
,n2

+ u21
√
n1mδm′ ,m−1δn′

1
,n1−1δn′

2
,n2

+ u22
√

(n1 + 1)mδm′ ,m−1δn′
1
,n1+1δn′

2
,n2

+ u23
√
n1(m+ 1)δm′ ,m+1δn′

1
,n1−1δn′

2
,n2

+ u24
√

(n2 + 1)(m+ 1)δm′ ,m+1δn′
1

,n1
δn′

2
,n2+1 + u25

√
n2mδm′ ,m−1δn′

1
,n1
δn′

2
,n2−1

+ u26
√

(n2 + 1)mδm′ ,m−1δn′
1
,n1
δn′

2
,n2+1 + u27

√
n2(m+ 1)δm′ ,m+1δn′

1
,n1
δn′

2
,n2−1.

4. Results and discussion

(I) In the transition matrix elements (see table 4), the terms containing group
parameters u16,u17, . . . ,u27 are the ones describing energy transfer. In detail, the terms
containing u16, u17, u18 and u19 describe the energy transfer between vibrations of
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AB and CD, while the terms containing u20, u21, u22, u23 describe the energy transfer
between the vibration and translation of AB and the terms containing u24, u25, u26,
and u27 correspond to that of CD. As an application of equation (20), we will calculate
the following two kinds of transition probabilities.

(i) Transition m = m′; n1 = 1, n2 = 0 → n′1 = 0, n′2 = 1. In this case the
translational energy is not changed [7], the vibrational quantum numbers satisfy
n1 + n2 = n′1 + n′2. The corresponding transition probability is

Pm,1,0→m,0,1 =
A′′2γ2

1γ
2
2

L4µ1µ2ω1ω2(ω1 − ω2)2 sin2
(

(ω1 − ω2)te
2

)
. (21)

Equation (20) indicates that the transition probability increases with ω1 approach-
ing ω2. When ω1 = ω2, it reaches the maximum value

P (max)
m,1,0→m,0,1 =

A′′2γ2
1γ

2
2t

2
e

4L4µ1µ2ω2
1

. (22)

That is to say that the effect of V–V energy transfer is optimum when the angular
frequencies of two molecules are equal. This phenomenon may be called V–V res-
onance. It is easy to see that the results mentioned above are very similar to those
obtained using usual time-dependent periodic perturbation theory. But it should be
pointed out that the resonance of the latter results from the periodic perturbation
out side, while that of the former from the interaction between molecules. For this
reason the physical mechanisms are different.

(ii) Transition n2 = n′2; m = 1, n1 = 0 → m′ = 0, n′1 = 1. It represents the energy
transfer between vibration of AB and translation under the condition that the
vibrational quantum number of CD is not changed. The corresponding transition
probability is

P1,0,n2→0,1,n2 =
A′′2~γ1λ

2

4π2µ1ω1(~ω1 −E)2 sin2 (~ω1 −E)te
2~

. (23)

Equation (23) indicates that the transition probability increases with E approaching
~ω1, when E = ~ω1 it reaches the maximum value

P (max)
1,0,n2→0,1,n2

=
A′′2γ2

1λ
2t2e

16π2~µ1ω1
. (24)

That is to say that the effect of T–V energy transfer is optimum when the transla-
tional energy difference E is equal to the vibrational energy difference ~ω1. This
phenomenon is called T–V resonance. Obviously, the results mentioned above are
still similar to those obtained by using time-dependent periodic perturbation the-
ory. But the former results from the interaction of vibration of AB and translation.
So two mechanisms of them are different.
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(II) Rapp and Golden had delt with the so-called resonant exchange process [6,7]

AB(n1 = 1) + BA(n2 = 0)→ AB(n′1 = 0) + BA(n′2 = 1). (25)

The transition of such a process can be obtained by solving the following equation [7]:

d
dt
crs(t) = − i

~
E0A(t)

∞∑
j=0

∞∑
n=0

Brs,jne(ωrj−ωsn)tcjn(t), (26)

where E0 = 1
2M̃v2

0 is the initial translational energy, A(t) denotes the classical tra-
jectory. ω is the angular frequency of AB (or CD). γ1 = γ2 = mA/(mA + mB),
µ1 = µ2 = µ = mAmB/(mA + mB), M̃ = 1

2 (mA + mB). The transition probability
from the quantum state n1,n2 to n′1,n′2 is

Pn1,n2→n′1,n′2
= |cn′1,n′2

|2. (27)

Due to that equation (26) contains infinite variables crs(t), it cannot be solved by usual
method [8]. To solve equation (26) we should introduce some hypothesis. We assume
that there exists a certain resonant mechanism between the initial state n1 = 1, n2 = 0
and the final state n′1 = 0, n′2 = 1 of the process (25), i.e., the so-called resonant
exchange mechanism [6,7]. Therefore, we can retain the terms containing c10 and c01.
Thereby (26) can be simplified to be a set of equations containing only two variables
c10 and c01, they can be solved by using usual method. Then we can obtain

P1,0→0,1 = |c01|2 ∼= sin2 (5 · 10−7v0
)
, (28)

here v0 is the initial translational velocity.
However, why is there resonant exchange mechanism between the initial state

and final state of process (25)? What is the theoretical basis? In view of the fact
that this resonant mechanism is not similar to that in classical mechanics or quantum
mechanics, the reliability of the expression of transition probability, equation (28),
remains to be confirmed.

It is easy to see that the resonant exchange process (25) is just the case of (i)
discussed above. Here we still adopt the method presented by Rapp and Golden.
For the process (25), under the condition of near resonance there is interconversion
between translational energy and vibrational energy [7] ∆E = ~(ω1 − ω2). On the
other hand, since this process concerns translational energy, we have ∆E = fE0 (f is
proportion parameter). If we set te = Re/v0, v0 = v0/2, Re may be approximately
regarded as effective collision distance. Thus we get ω1−ω2 = fE0/~, (ω1−ω2)te =

(fM̃Re/~)v0. Substituting those expressions into equation (21) yields

Pm,1,0→m,0,1 ≡ P1,0→0,1 =
γ4~2

L4µ2ω2f 2 sin2 fM̃Re
~

v0. (29)

In deriving equation (29) we have used A′′ = E0. With the aids of the data
presented by table 5 we can obtain Re = 4.8 · 10−10mB/mA = 0.9 · 10−8 cm,
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Table 5
Dynamical parameters in process (25).

Dynamical parameters Reference

M̃ = 1
2 (mA +mB) = 10 amu [6,7]

mA = 1 amu, mB = 19 amu [6,7]
L = 0.2 · 10−8 cm [7]
ω = 1.2 · 1014 sec−1 [5]
te ∼= 10 · 10−13 sec [5]

f = 12.55 ·10−2mA/mB = 3.3 ·10−3. Substituting these results into equation (20), we
obtain equation (28) again. The results above show that the reliability of expression
(28) obtained by resonant exchange hypothesis can be confirmed by using the dynam-
ical Lie algebraic method. But it should be noted that the resonance stems from V–V
resonance between not the initial state and final state of process (25) but two mole-
cules. Such a resonance depends not on whether two molecules are the same, but on
whether the vibrational frequencies of the two molecules are identical approximately
(ω1
∼= ω2).
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